Graphene/h-BN Heterostructure Interconnects

نویسندگان

  • Nikhil Jain
  • Yang Xu
  • Bin Yu
چکیده

The material behavior of graphene, a single layer of carbon lattice, is extremely sensitive to its dielectric environment. We demonstrate improvement in electronic performance of graphene nanowire interconnects with full encapsulation by lattice-matching, chemically inert, 2D layered insulator hexagonal boron nitride (hBN). A novel layer-based transfer technique is developed to construct the h-BN/MLG/h-BN heterostructures. The encapsulated graphene wires are characterized and compared with that on SiO2 or h-BN substrate without passivating h-BN layer. Significant improvements in maximum current-carrying density, breakdown threshold, and power density in encapsulated graphene wires are observed. These critical improvements are achieved without compromising the carrier transport characteristics in graphene. Furthermore, graphene wires exhibit electrical behavior less insensitive to ambient conditions, as compared with the non-passivated ones. Overall, h-BN/graphene/hBN heterostructure presents a robust material platform towards the implementation of high-speed carbon-based interconnects. Keywords—Two-dimensional nanosheet, graphene, hexagonal boron nitride, heterostructure, interconnects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis of High‐Quality Graphene and Hexagonal Boron Nitride Monolayer In‐Plane Heterostructure on Cu–Ni Alloy

Graphene/hexagonal boron nitride (h-BN) monolayer in-plane heterostructure offers a novel material platform for both fundamental research and device applications. To obtain such a heterostructure in high quality via controllable synthetic approaches is still challenging. In this work, in-plane epitaxy of graphene/h-BN heterostructure is demonstrated on Cu-Ni substrates. The introduction of nick...

متن کامل

Graphene-Hexagonal Boron Nitride Heterostructure as a Tunable Phonon–Plasmon Coupling System

The layered van der Waals (vdW) heterostructure, assembled from monolayer graphene, hexagonal boron nitride (h-BN) and other atomic crystals in various combinations, is emerging as a new paradigm with which to attain desired electronic and optical properties. In this paper, we study theoretically the mid-infrared optical properties of the vdW heterostructure based on the graphene–h-BN system. T...

متن کامل

Suppression of 1/f noise in near-ballistic h-BN-graphene-h-BN heterostructure field- effect transistors

Articles you may be interested in Microscopic origin of low frequency noise in MoS2 field-effect transistors Large on/off current ratio in hybrid graphene/BN nanoribbons by transverse electric field-induced control of bandgap Appl. 1 ∕ f noise in Ga N ∕ Al Ga N heterostructure field-effect transistors in high magnetic fields at 300 K

متن کامل

Vibrational Properties of h-BN and h-BN-Graphene Heterostructures Probed by Inelastic Electron Tunneling Spectroscopy.

Inelastic electron tunneling spectroscopy is a powerful technique for investigating lattice dynamics of nanoscale systems including graphene and small molecules, but establishing a stable tunnel junction is considered as a major hurdle in expanding the scope of tunneling experiments. Hexagonal boron nitride is a pivotal component in two-dimensional Van der Waals heterostructures as a high-quali...

متن کامل

A hybrid MBE-based growth method for large-area synthesis of stacked hexagonal boron nitride/graphene heterostructures

Van der Waals heterostructures combining hexagonal boron nitride (h-BN) and graphene offer many potential advantages, but remain difficult to produce as continuous films over large areas. In particular, the growth of h-BN on graphene has proven to be challenging due to the inertness of the graphene surface. Here we exploit a scalable molecular beam epitaxy based method to allow both the h-BN an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016